260 research outputs found

    Constraining density fluctuations with big bang nucleosynthesis in the era of precision cosmology

    Get PDF
    We reexamine big bang nucleosynthesis with large-scale baryon density inhomogeneities when the length scale of the density fluctuations exceeds the neutron diffusion length (∌10⁷-10⁞ cm at BBN), and the amplitude of the fluctuations is sufficiently small to prevent gravitational collapse. In this limit, the final light element abundances can be determined by simply mixing the abundances from regions with different baryon/photon ratios without interactions. We examine gaussian, lognormal, and gamma distributions for the baryon/photon ratio, η. We find that the deuterium and lithium-7 abundances increase with the RMS fluctuation in η, while the effect on helium-4 is much smaller. We show that these increases in the deuterium and lithium-7 abundances are a consequence of Jensen's inequality, and we derive analytic approximations for these abundances in the limit of small RMS fluctuations. Observational upper limits on the primordial deuterium abundance constrain the RMS fluctuation in η to be less than 17% of the mean value of η. This provides us with a new limit on the graininess of the early universe

    Is the Internet a useful and relevant source for health and health care information retrieval for German cardiothoracic patients? First results from a prospective survey among 255 Patients at a German cardiothoracic surgical clinic

    Get PDF
    BACKGROUND: It is not clear how prevalent Internet use among cardiopathic patients in Germany is and what impact it has on the health care utilisation. We measured the extent of Internet use among cardiopathic patients and examined the effects that Internet use has on users' knowledge about their cardiac disease, health care matters and their use of the health care system. METHODS: We conducted a prospective survey among 255 cardiopathic patients at a German university hospital. RESULTS: Forty seven respondents (18 %) used the internet and 8,8 % (n = 23) went online more than 20 hours per month. The most frequent reason for not using the internet was disinterest (52,3 %). Fourteen patients (5,4 %) searched for specific disease-related information and valued the retrieved information on an analogous scale (1 = not relevant, 5 = very relevant) on median with 4,0. Internet use is age and education dependent. Only 36 (14,1 %) respondents found the internet useful, whereas the vast majority would not use it. Electronic scheduling for ambulatory visits or postoperative telemedical monitoring were rather disapproved. CONCLUSION: We conclude that Internet use is infrequent among our study population and the search for relevant health and disease related information is not well established

    Asymmetric WIMP dark matter

    Full text link
    In existing dark matter models with global symmetries the relic abundance of dark matter is either equal to that of anti-dark matter (thermal WIMP), or vastly larger, with essentially no remaining anti-dark matter (asymmetric dark matter). By exploring the consequences of a primordial asymmetry on the coupled dark matter and anti-dark matter Boltzmann equations we find large regions of parameter space that interpolate between these two extremes. Interestingly, this new asymmetric WIMP framework can accommodate a wide range of dark matter masses and annihilation cross sections. The present-day dark matter population is typically asymmetric, but only weakly so, such that indirect signals of dark matter annihilation are not completely suppressed. We apply our results to existing models, noting that upcoming direct detection experiments will constrain a large region of the relevant parameter space.Comment: 32 pages, 6 figures, updated references, updated XENON100 bounds, typo in figure caption correcte

    SUSY Stops at a Bump

    Full text link
    We discuss collider signatures of the "natural supersymmetry" scenario with baryon-number violating R-parity violation. We argue that this is one of the few remaining viable incarnations of weak scale supersymmetry consistent with full electroweak naturalness. We show that this intriguing and challenging scenario contains distinctive LHC signals, resonances of hard jets in conjunction with relatively soft leptons and missing energy, which are easily overlooked by existing LHC searches. We propose novel strategies for distinguishing these signals above background, and estimate their potential reach at the 8 TeV LHC. We show that other multi-lepton signals of this scenario can be seen by currently existing searches with increased statistics, but these opportunities are more spectrum-dependent.Comment: 23 pages, 7 figures, 3 tables. V2: spectrum discussion corrected, most of the changes are in Sec. 2. Benchmarks, analysis and conclusions unchanged. References adde

    “Genes”

    Get PDF
    In order to describe a cell at molecular level, a notion of a “gene” is neither necessary nor helpful. It is sufficient to consider the molecules (i.e., chromosomes, transcripts, proteins) and their interactions to describe cellular processes. The downside of the resulting high resolution is that it becomes very tedious to address features on the organismal and phenotypic levels with a language based on molecular terms. Looking for the missing link between biological disciplines dealing with different levels of biological organization, we suggest to return to the original intent behind the term “gene”. To this end, we propose to investigate whether a useful notion of “gene” can be constructed based on an underlying notion of function, and whether this can serve as the necessary link and embed the various distinct gene concepts of biological (sub)disciplines in a coherent theoretical framework. In reply to the Genon Theory recently put forward by Klaus Scherrer and JĂŒrgen Jost in this journal, we shall discuss a general approach to assess a gene definition that should then be tested for its expressiveness and potential cross-disciplinary relevance

    The Imperfect Fluid behind Kinetic Gravity Braiding

    Get PDF
    We present a standard hydrodynamical description for non-canonical scalar field theories with kinetic gravity braiding. In particular, this picture applies to the simplest galileons and k-essence. The fluid variables not only have a clear physical meaning but also drastically simplify the analysis of the system. The fluid carries charges corresponding to shifts in field space. This shift-charge current contains a spatial part responsible for diffusion of the charges. Moreover, in the incompressible limit, the equation of motion becomes the standard diffusion equation. The fluid is indeed imperfect because the energy flows neither along the field gradient nor along the shift current. The fluid has zero vorticity and is not dissipative: there is no entropy production, the energy-momentum is exactly conserved, the temperature vanishes and there is no shear viscosity. Still, in an expansion around a perfect fluid one can identify terms which correct the pressure in the manner of bulk viscosity. We close by formulating the non-trivial conditions for the thermodynamic equilibrium of this imperfect fluid.Comment: 23 pages plus appendices. New version includes extended discussion on diffusion and dynamics in alternative frames, as well as additional references. v3 reflects version accepted for publication in JHEP: minor comments added regarding suitability to numerical approache

    Characterizing the non-linear growth of large-scale structure in the Universe

    Get PDF
    The local Universe displays a rich hierarchical pattern of galaxy clusters and superclusters. The early Universe, however, was almost smooth, with only slight 'ripples' seen in the cosmic microwave background radiation. Models of the evolution of structure link these observations through the effect of gravity, because the small initially overdense fluctuations attract additional mass as the Universe expands. During the early stages, the ripples evolve independently, like linear waves on the surface of deep water. As the structures grow in mass, they interact with other in non-linear ways, more like waves breaking in shallow water. We have recently shown how cosmic structure can be characterized by phase correlations associated with these non-linear interactions, but hitherto there was no way to use that information to reach quantitative insights into the growth of structures. Here we report a method of revealing phase information, and quantify how this relates to the formation of a filaments, sheets and clusters of galaxies by non-linear collapse. We use a new statistic based on information entropy to separate linear from non-linear effects and thereby are able to disentangle those aspects of galaxy clustering that arise from initial conditions (the ripples) from the subsequent dynamical evolution.Comment: Accepted for publication in Nature. For high-resolution Figure 3, please see http://www.nottingham.ac.uk/~ppzpc/phases/n0colorphase.html, For the animations and the idea of this paper please see http://www.nottingham.ac.uk/~ppzpc/phases/index.htm

    Transmitted Drug Resistance in Persons with Acute/Early HIV-1 in San Francisco, 2002-2009

    Get PDF
    Transmitted HIV-1 drug resistance (TDR) is an ongoing public health problem, representing 10-20% of new HIV infections in many geographic areas. TDR usually arises from two main sources: individuals on antiretroviral therapy (ART) who are failing to achieve virologic suppression, and individuals who acquired TDR and transmit it while still ART-naïve. TDR rates can be impacted when novel antiretroviral medications are introduced that allow for greater virologic suppression of source patients. Although several new HIV medications were introduced starting in late 2007, including raltegravir, maraviroc, and etravirine, it is not known whether the prevalence of TDR was subsequently affected in 2008-2009.We performed population sequence genotyping on individuals who were diagnosed with acute or early HIV (<6 months duration) and who enrolled in the Options Project, a prospective cohort, between 2002 and 2009. We used logistic regression to compare the odds of acquiring drug-resistant HIV before versus after the arrival of new ART (2005-2007 vs. 2008-2009). From 2003-2007, TDR rose from 7% to 24%. Prevalence of TDR was then 15% in 2008 and in 2009. While the odds of acquiring TDR were lower in 2008-2009 compared to 2005-2007, this was not statistically significant (odds ratio 0.65, 95% CI 0.31-1.38; p = 0.27).Our study suggests that transmitted drug resistance rose from 2003-2007, but this upward trend did not continue in 2008 and 2009. Nevertheless, the TDR prevalence in 2008-2009 remained substantial, emphasizing that improved management strategies for drug-resistant HIV are needed if TDR is to be further reduced. Continued surveillance for TDR will be important in understanding the full impact of new antiretroviral medications

    YwdL in Bacillus cereus: Its Role in Germination and Exosporium Structure

    Get PDF
    In members of the Bacillus cereus group the outermost layer of the spore is the exosporium, which interacts with hosts and the environment. Efforts have been made to identify proteins of the exosporium but only a few have so far been characterised and their role in determining spore architecture and spore function is still poorly understood. We have characterised the exosporium protein, YwdL. ΔywdL spores have a more fragile exosporium, subject to damage on repeated freeze-thawing, although there is no evidence of altered resistance properties, and coats appear intact. Immunogold labelling and Western blotting with anti-YwdL antibodies identified YwdL to be located exclusively on the inner surface of the exosporium of B. cereus and B. thuringiensis. We conclude that YwdL is important for formation of a robust exosporium but is not required to maintain the crystalline assembly within the basal layer or for attachment of the hairy nap structure. ΔywdL spores are unable to germinate in response to CaDPA, and have altered germination properties, a phenotype that confirms the expected defect in localization of the cortex lytic enzyme CwlJ in the coat

    SUSY Constraints, Relic Density, and Very Early Universe

    Get PDF
    The sensitivity of the lightest supersymmetric particle relic density calculation to different cosmological scenarios is discussed. In particular, we investigate the effects of modifications of the expansion rate and of the entropy content in the Early Universe. These effects, even with no observational consequences, can still drastically modify the relic density constraints on the SUSY parameter space. We suggest general parametrizations to evaluate such effects, and derive also constraints from Big-Bang nucleosynthesis. We show that using the relic density in the context of supersymmetric constraints requires a clear statement of the underlying cosmological model assumptions to avoid misinterpretations. On the other hand, we note that combining the relic density calculation with the eventual future discoveries at the LHC will hopefully shed light on the Very Early Universe properties.Comment: 11 pages, 5 figures. v2: new figures adde
    • 

    corecore